Light Sheet
MicroscopyFluorescence Microscopy

Light Sheet Microscopy

Light sheet microscopy enables scientists to overcome two major problems in modern microscopy. Namely, to image biological samples for much longer under physiologically relevant conditions than with conventional microscopy techniques and to image samples of considerable size in a more reasonable and relevant time frame.

This is achieved by illuminating the sample with a sheet of light positioned perpendicular to the imaging axis and thereby illuminating only the plane in focus. As a result, out-of-focus structures will see less light and the sample is therefore less likely to develop phototoxic products. 

Light sheet microscopy combines the best features of two worlds. Signal to noise will be enhanced when comparing it with widefield illumination. Acquisition speed will benefit from using a camera rather than the point scanner of a confocal.

Iris 15 photo

Iris 15

The Iris 15 is specifically designed for light sheet microscopy with a massive 25 mm diagonal field of view and small 4.25×4.25 µm pixels.

For reasons of geometry, light sheet microscopy is typically performed with low magnification objectives which requires a smaller pixel for Nyquist sampling. The small pixels of the Iris 15 give greatly improved resolution over typical sCMOS devices to maximize the level of detail detected in the sample.

The range of light sheet microscopy techniques and geometries is staggering and for many, having a large field of view is of great benefit. A larger field of view camera allows larger samples to be imaged without needing to stitch multiple images together or, for smaller samples, the large field of view can be split to perform multichannel imaging easily on the same sensor.

The Iris 15 also features Programmable Scan Mode, which allows the user control over the rolling shutter exposure and read-out functionality of the sensor to allow optimization around applications that require control over the line time.

Light Sheet Microscopy samples
Prime BSI Express Camera

Prime BSI Express

High sensitivity, 95% quantum efficient, sCMOS camera with 6.5 µm pixels, 1.0 e read noise and a full-frame framerate of 95 fps.

The high quantum efficiency and low read noise combined with the balanced 6.5 µm pixel size offers higher sensitivity than conventional sCMOS devices whilst maintaining the resolution, large field of view and high speed.

When the Iris 15 isn’t enough, the Prime BSI Express provides the necessary boost in sensitivity and speed.

Prime 95B photo

Prime 95B

Highest sensitivity, 95% quantum efficient sCMOS camera with 11 µm pixels.

Light sheet microscopy is considerably less damaging to live cells than other forms of fluorescence microscopy which enables samples to be imaged over very long time scales. To maximize the length of time the sample remains viable, the almost perfect, 95% QE sensor of the Prime 95B allows light intensity to be reduced even further while maintaining a high level of signal detection.

This is ideal for reducing the effects of photobleaching as well as improving the condition of samples that are particularly sensitive to photodamage.

Compared to typical sCMOS devices, the exposure time on the Prime 95B could be reduced by up to four times and still give equivalent detection. It also maintains the large field of view and high speed expected of typical sCMOS devices.

Light Sheet Microscopy samples

Customer Stories

Light Sheet Microscopy

Single frame of an OpenSPIM acquisition of a zebrafish embryo expressing GFP in vascular endothelial cells, allowing visualization of the heart and the vasculature.
Greg Perry University of London

“The camera is ideal for our OpenSPIM system due to the sensitivity and the large field of view.”

Read More

Light Sheet Microscopy

Professor John Girkin Durham University

“The Iris 9 is demonstrating high sensitivity to the low light levels present during rapid in vivo imaging and also the timing required to ensure the accurate image synchronization. We have imaged hearts for over an hour without losing timing lock on the imaging, demonstrating the performance of the camera”

Read More

Light Sheet and High Content Imaging

Christopher Yip, Ph.D. University of Toronto

“Having the Iris 15’s high sensitivity, small pixels, and large field of view addresses a number of key experimental considerations for our study of development, including the ability to acquire overlapping images from different imaging angles, which is key for multi-view SPIM.”

Read More