Features	**Benefits**
EM gain	Low-noise, impact-ionization process provides very high sensitivity
Back-illuminated EMCCD	Highest available quantum efficiency (>90% peak QE)
Deep cooling	Thermodiastic cooling to -60°C minimizes dark current and allows long exposure times
No need for a bulky chilled-water circulator or cryogenic compressor, both of which are prone to leaks, blockages, and condensation	
Lifetime vacuum	Permanent, all-metal vacuum seals guaranteed for lifetime of camera
Maintenance-free operation	
1024 x 1024 imaging array	Good field of view and sensitivity
Good resolution	
13 x 13-μm pixels	Excellent for high-speed image visualization
Perfect for high-precision photometry	
10-MHz readout	Select readout mode via software:
(1) optimal high-speed / high-sensitivity performance	
(2) optimal wide-dynamic-range performance	
5- and 1-MHz readout	Wide dynamic range allows detection of bright and dim signals in the same image
Dual amplifiers	100% duty cycle for continuous data collection
No mechanical shutter required	
16-bit digitization	Single optical window
Single vacuum window is the only optical surface between incident light and EMCCD surface	
No light loss from multiple optical surfaces	
C-mount	Easily attaches to microscopes, standard lenses, or optical equipment
Acquisition software	Captures, analyzes, and saves high-resolution images
PCI interface	High-bandwidth, uninterrupted data transfer
PVCAM®	Supported by numerous third-party software packages
Real-time focus	
Precise integration with shutters, filter wheels, etc.	
Circular buffers | Compatible with Windows® XP/7
Device sequencing |
EMCCD Technology

![Quantum Efficiency vs Wavelength Graph]

Specifications

<table>
<thead>
<tr>
<th>Region</th>
<th>1024 x 1024</th>
<th>512 x 512</th>
<th>256 x 256</th>
<th>128 x 128</th>
<th>64 x 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 x 1</td>
<td>8.5</td>
<td>16.7</td>
<td>32</td>
<td>60</td>
<td>104</td>
</tr>
<tr>
<td>2 x 2</td>
<td>16.7</td>
<td>32</td>
<td>60</td>
<td>104</td>
<td>163</td>
</tr>
<tr>
<td>4 x 4</td>
<td>32</td>
<td>60</td>
<td>103</td>
<td>163</td>
<td>234</td>
</tr>
<tr>
<td>8 x 8</td>
<td>59</td>
<td>103</td>
<td>164</td>
<td>231</td>
<td>291</td>
</tr>
</tbody>
</table>

(Regions per second)

Note: Frame rates are measured at 10 MHz with 1.2-μsec/row vertical shift speed.

EMCCD Image Sensor
e2v CCD201; back-illuminated, frame-transfer CCD with EM gain

EMCCD Format
1024 x 1024 imaging pixels; 13 x 13-μm pixels; 13.3 x 13.3-mm imaging area (optically centered)

Linear Full Well
80 ke- 730 ke- (“EM gain” amplifier)

Digitizer Type
16 bits @ 10 MHz, 5 MHz, and 1 MHz

<table>
<thead>
<tr>
<th>“EM gain” amplifier (port #1)</th>
<th>“Traditional” amplifier (port #2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read noise</td>
<td>Read noise effectively reduced to</td>
</tr>
<tr>
<td>-35 e- rms @ 5 MHz</td>
<td><1 e- rms with EM gain enabled</td>
</tr>
<tr>
<td>-45 e- rms @ 10 MHz</td>
<td>8 e- rms @ 1 MHz</td>
</tr>
</tbody>
</table>

EM Gain
1 to 1,000x (typical)

<table>
<thead>
<tr>
<th>Spurious events</th>
<th>0.01 e-/pixel/frame (typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled via software in 4,096 steps</td>
<td></td>
</tr>
</tbody>
</table>

Parallel (vertical) Shift Rate
1.2 μsec/row

EMCCD Temperature @ 20˚C Ambient
-60˚C (typical)

Dark Current @ -60˚C
0.005 e-/μs (typical)

Binning
Flexible binning capabilities in parallel direction; 1, 2, 4, and 8 binning in serial direction

Operating Environment
0 to 30˚C ambient, 0 to 80% relative humidity noncondensing

Note: Specifications are subject to change.

Cascade, Photometrics, and PVCAM are registered trademarks of Photometrics.
Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Other brand and product names are the trademarks or registered trademarks of their respective owners and manufacturers.